MATH 1A - QUIZ 1

PEYAM RYAN TABRIZIAN

Name: \qquad
Instructions: You have 10 minutes to do this quiz, for a total of 10 points. Show your work, unless otherwise specified! Good luck, and may πm be with you!
(1) (3 points) Find the domain of $f(x)=\cos \left(\frac{1}{x}\right) \sqrt{(x-3)^{2}-4}$ We want:

1) $x \neq 0$ (because we want the denominator of the fraction $\frac{1}{x}$ to be nonzero)
2) $(x-3)^{2}-4 \geq 0$ (because we want the number under the square root to be ≥ 0.

Solving this, we get: $(x-3)^{2} \geq 4$, that is $x-3 \leq-2$ or $x-3 \geq 2$, so $x \leq 1$ or $x \geq 5$
3) Combining, we get: $x \neq 0$ and ($x \leq 1$ or $x \geq 5$)

Answer: $\operatorname{Dom}(\mathrm{f})=(-\infty, 0) \cup(0,1] \cup[5, \infty)^{1}$
(2) (2 points) Find the range of $f(x)=3 \sin (x)+2$. Here you do NOT have to show any work.

You could either draw the graph of f, or do it algebraically:

$$
\begin{array}{r}
-1 \leq \sin (x) \leq 1 \\
-3 \leq 3 \sin (x) \leq 3 \\
-1 \leq 3 \sin (x)+2 \leq 5
\end{array}
$$

Hence $\operatorname{Ran}(\mathrm{f})=[-1,5]$

[^0](3) (2 points) Find $f \circ f$ (f composed with f), where $f(x)=\frac{1}{x+1}$. Write your answer in the form of a fraction, i.e. $\frac{a x+b}{c x+d}$, where a, b, c, d are integers.
$$
(f \circ f)(x)=f(f(x))=f(X)=\frac{1}{X+1}=\frac{1}{\frac{1}{x+1}+1}=\frac{1}{\frac{1+(x+1)}{x+1}}=\frac{1}{\frac{x+2}{x+1}}=\frac{x+1}{x+2}
$$
(4) (3 points) Explain in words how to obtain the graph of $f(x)=2 \sin (-x+3)+4$ from the graph of $y=\sin (x)$. You do not have to draw any graphs!

Note: The following vocabulary may be useful: Stretch/Compress horizontally/vertically by a factor of \cdots, shift up/down/left/right, Flip across the x / y-axis.

Note: There are many answers to this problem, here are my two favorite ones:
Answer 1 (horizontal, then vertical): First we start with the graph of $y=$ $\sin (x)$, and then we:

1) Shift the resulting graph left by 3 units (to obtain $\sin (x+3)$)
2) Flip the resulting graph (horizontally) across the y-axis (to obtain $\sin (-x+$ 3))
3) Stretch the resulting graph vertically by a factor of 2 (to obtain $2 \sin (-x+3)$)
4) Shift the resulting graph up by 4 units (to obtain $2 \sin (-x+3)+4)$

Answer 2 (vertical, then horizontal): First we start with the graph of $y=$ $\sin (x)$, and then we:

1) Stretch the resulting graph vertically by a factor of 2 (to obtain $2 \sin (x)$)
2) Shift the resulting graph up by 4 units (to obtain $2 \sin (x)+4$)
3) Shift the resulting graph left by 3 units (to obtain $2 \sin (x+3)+4$)
4) Flip the resulting graph (horizontally) across the y-axis (to obtain $2 \sin (-x+$ $3)+4)$

[^0]: Date: Friday, September 6th, 2013.
 ${ }^{1}$ which you can also write as 'the set of x such that $x<0$ or $0<x \leq 1$ or $x \geq 5$,

