MATH 1A - QUIZ 1

PEYAM RYAN TABRIZIAN

Name:

Instructions: You have 10 minutes to do this quiz, for a total of 10 points. Show your work, unless otherwise specified! Good luck, and may πm be with you!

(1) (3 points) Find the domain of $f(x) = \cos(\frac{1}{x})\sqrt{(x-3)^2-4}$ We want:

1) $x \neq 0$ (because we want the denominator of the fraction $\frac{1}{x}$ to be nonzero)

2) $(x-3)^2-4 \ge 0$ (because we want the number under the square root to be ≥ 0 .

Solving this, we get: $(x-3)^2 \ge 4$, that is $x-3 \le -2$ or $x-3 \ge 2$, so $\boxed{x \le 1 \text{ or } x \ge 5}$

3) Combining, we get: $x \neq 0$ and $(x \leq 1 \text{ or } x \geq 5)$

```
<u>Answer:</u> Dom(f) = (-\infty, 0) \cup (0, 1] \cup [5, \infty)
```

(2) (2 points) Find the range of $f(x) = 3\sin(x) + 2$. Here you do **NOT** have to show any work.

You could either draw the graph of f, or do it algebraically:

 $-1 \leq \sin(x) \leq 1$ $-3 \leq 3 \sin(x) \leq 3$ $-1 \leq 3 \sin(x) + 2 \leq 5$ Hence Ran(f) = [-1, 5]

Date: Friday, September 6th, 2013.

¹which you can also write as 'the set of x such that x < 0 or $0 < x \le 1$ or $x \ge 5$ '

PEYAM RYAN TABRIZIAN

(3) (2 points) Find $f \circ f$ (f composed with f), where $f(x) = \frac{1}{x+1}$. Write your answer in the form of a fraction, i.e. $\frac{ax+b}{cx+d}$, where a, b, c, d are integers.

$$(f \circ f)(x) = f(f(x)) = f(X) = \frac{1}{X+1} = \frac{1}{\frac{1}{x+1}+1} = \frac{1}{\frac{1+(x+1)}{x+1}} = \frac{1}{\frac{x+2}{x+1}} = \frac{x+1}{x+2}$$

(4) (3 points) Explain in words how to obtain the graph of $f(x) = 2\sin(-x+3) + 4$ from the graph of $y = \sin(x)$. You do **not** have to draw any graphs!

Note: The following vocabulary may be useful: Stretch/Compress horizontally/vertically by a factor of \cdots , shift up/down/left/right, Flip across the x/y-axis.

Note: There are many answers to this problem, here are my two favorite ones:

Answer 1 (horizontal, then vertical): First we start with the graph of y = sin(x), and then we:

- 1) Shift the resulting graph left by 3 units (to obtain sin(x+3))
- 2) Flip the resulting graph (horizontally) across the y-axis (to obtain sin(-x + 3))
- 3) Stretch the resulting graph vertically by a factor of 2 (to obtain $2\sin(-x+3)$)
- 4) Shift the resulting graph up by 4 units (to obtain $2\sin(-x+3)+4$)

Answer 2 (vertical, then horizontal): First we start with the graph of y = sin(x), and then we:

- 1) Stretch the resulting graph vertically by a factor of 2 (to obtain $2\sin(x)$)
- 2) Shift the resulting graph up by 4 units (to obtain $2\sin(x) + 4$)
- 3) Shift the resulting graph left by 3 units (to obtain $2\sin(x+3) + 4$)
- 4) Flip the resulting graph (horizontally) across the y-axis (to obtain $2\sin(-x+3)+4$)